Math 2550 - Homework # 8 Linear Transformations and Eigenvalues

1. Show that the following are linear transformations by finding a matrix A such that $T(\vec{v}) = A\vec{v}$.

(a)
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 where $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+2y \\ 3x-y \end{pmatrix}$
(b) $T : \mathbb{R}^3 \to \mathbb{R}^2$ where $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x-y+z \\ y-4z \end{pmatrix}$
(c) $T : \mathbb{R}^3 \to \mathbb{R}^3$ where $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ x+y+z \\ 2x+z \end{pmatrix}$

2. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that

$$T\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}-5\\2\end{pmatrix}$$
 and $T\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\-1\end{pmatrix}$

Find a matrix A such that $T(\vec{v}) = A\vec{v}$.

3. For each matrix A do the following: (i) Find the eigenvalues of A, (ii) Find a basis for each eigenspace $E_{\lambda}(A)$, (iii) For each eigenvalue, compute it's algebraic and geometric multiplicity.

(a)
$$A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$

(d) $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$
(e) $A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix}$
(f) $A = \begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$

4. Let A be an $n \times n$ matrix. Suppose that λ is an eigenvalue of A with corresponding eigenvector \vec{x} . Find a formula for $A^n \vec{x}$ for n = 1 and n = 2 and n = 3. What is the formula for general n?